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ABSTRACT 

This paper describes a new technology of mesh size control using a background overlay grid size function. A background overlay 
grid is generated first according to the defined size functions and then is used as the base grid for determining the mesh size at each 
point during the meshing process. The definitions, classifications, implementations and control algorithms of three types of size 
functions including a fixed size function, a curvature size function and a proximity size function are presented in detail. Meshing 
results with controlled mesh sizes are given, and considerations for further improvement are listed. 
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1. INTRODUCTION  

In the mesh generation field, the mesh size control is very 
critical to mesh quality and to the successful field 
simulations using the generated mesh. The mesh sizes need 
to catch local details in areas of the geometry where small 
features exist. On the other hand, in non-critical areas of the 
geometry, the mesh size can be large as long as the mesh 
transition is smooth enough. However, it is tedious to 
manually determine the local features of the geometry and 
mesh these entities by desired sizes. Premeshing boundaries 
of the domain with the desired size is a standard way of 
obtaining size transition and gradation. However, the user 
has no direct control over the mesh grading on the geometry. 
Local refinement of an existing mesh is another option. 
Unfortunately, unrefined meshes will form a fixed constraint 
to the refined areas and results are not always satisfactory.  

As a simple example of the importance of size functions, 
consider Figure 1. The geometry is a 10x10 square with a 
circular hole of radius 0.5. In Figure 1(a) the inner circle is 
pre-meshed with a size of 0.05 and rest of the face is meshed 
with a size of 1.0 by an advancing front triangle meshing 
algorithm. Transitions are handled by the algorithm itself, 
with no reliance on a size function. A total of 5,656 elements 
are generated. In (b), the same algorithm is used, but a size 
function is prescribed which guides the meshing. The size 
function used prescribes a size of 0.05 at the hole boundary 
and a geometric growth rate of 1.2 based on the distance 
from the hole. This growth is limited by a maximum size 
specified as 1.0. There are only 1,950 elements generated in 
this case. You can see that the mesh gradation is well 
controlled by the growth rate in (b) compared with the mesh 
pattern in (a). When meshing the same face with a 
quadrilateral/paving algorithm [1], no mesh could be 
obtained without a size function because of the extreme 

gradation difference and the lack of interior gradation 
control. With the size function it can be meshed nicely, as 
shown in Figure 1(c). 

During the meshing process it is highly desirable that some 
guidance be provided to the mesh tools to specify the size of 
elements to be defined and the variation of size from one part 
of the domain to another. Sizing and gradation control can be 
determined during the meshing process or more commonly 
as an a priori procedure. As an a priori procedure, a size 
function is defined over the entire domain. The sizing 
function, d=f (x), where d is the target element size and x is 
the location in the domain, can be customized for specific 
geometric or physical prosperities. The sizing function may 
take into account surface features as well as physical  

 

(a) Circle pre-meshed with size 0.05, face meshed 
with size 1.0 



 

(b) Face directly meshed with fixed size function. 

 
(c) Face meshed with quads 

Figure 1. Comparison of meshing results from: (a) 
pre-meshed inner circle with no growth control and 

(b) from size function with growth controlled 

properties in determining local element sizes. Such surface 
features as proximity to other surfaces and/or surface 
curvature can be used to control surface mesh density 
distribution. Physical properties such as boundary layers, 
surface loads or error norms from a previous solution may be 
considered. For instance, in an adaptive finite element 
scheme, a size specification in the simulated field is deduced 
from simulation results, usually via an error estimate. This 
may then be combined with face geometric constraints being 
considered. The size specification is then normalized by 
metrics and this metric map that defines a control space is 
used to control the mesh gradation [2]. 

Many authors have described the use of some form of 
element size control in the literature for a specific meshing 

algorithm. Based on the spatial decomposition approach for 
meshing purposes as pioneered about two decades ago by 
Yerry, Shepard [3] and surveyed by Thacker [4] and Shepard 
[5], a size-governed quadtree triangle mesh generation 
method was presented by Frey and Marechal [6] to deal with 
planar domains of arbitrary shape. The domain is first 
decomposed into a set of cells. The size of the these tree cells 
are adjusted to match the element sizes at boundaries of the 
domain prescribed by a given size map, and the mesh 
gradation is controlled by the level of refinement of the cells 
using the [2:1] rule. Therefore, these cells have a size 
distribution compatible with the desired mesh gradation and 
so can provide a convenient control space which can be used 
to determine the element size. Secondly, the quadrants are 
triangulated accordingly to get full triangle elements. Finally 
the triangles are optimized (i.e. smoothed).  

Currently, a background mesh appears to be the most 
commonly used means of defining an element sizing 
function. In the background mesh method, collections of 
vertices containing the sizing information are first selected. 
Then Delaunay triangulation is performed with them, 
inserting additional interior nodes. Finally the meshing tool 
retrieves a target size at any location within the domain by 
linear interpolating in a certain background triangle (for 2D) 
or tetrahedra (for 3D).  

Shahyar Pirzadeh [7] introduced an approach that adopted 
uniform Cartesian grid and the elliptic grid point distribution 
for generation of 2D unstructured mesh using the advancing 
front technique. It was analogous to solving a steady-state 
heat conduction problem with discrete heat sources. The 
spacing parameters of grid points were distributed over the 
nodes of the Cartesian background grid by solving a Poisson 
equation. To increase the control over the grid point 
distribution, a directional clustering approach was also 
implemented. However, there will be some mathematical 
difficulties when it is used for general 3D problems and/or 
with non-nodal and non-linear sources. 

More recently, Owen and Saigai [8] presented the method of 
controlling element size on parametric surfaces, taking into 
account boundary layers, surface curvature and anisotropy, 
and using natural neighborhood interpolation. Related works 
using background mesh can be found in [9 - 11]. 

Although the algorithms discussed above are effective and 
useful in many aspects, neither gives a general and versatile 
way of size control for all kinds of geometry and all types of 
element. The goal of this work was to create a general way of 
defining mesh size for all element types and for different 
kinds of geometric features. The size function had to provide 
very rapid evaluators that would be general for any meshing 
algorithm. Also, local geometric effects had to be able to 
radiate, or influence size on a more non-local area. For 
example, tight curvature on one surface should affect other 
edges/surfaces in close proximity to ensure a controlled 
transition rate. This paper describes how these objectives 
were met using a background overlay grid. The work will be 
described by first defining the size functions provided to the 
user and the size function initializations. Then details of the 
use of a background grid are documented and examples of its 
use given. 



2. DEFINITIONS OF SIZE FUNCTIONS  

2.1 Terminology 
Our size functions are based on a distance controlled 
radiation. To understand this definition, the parameters that 
are common to all size function must be defined.  

• Source entities: Source entities are a set of geometric 
entities on which the mesh sizes are specified and from 
which the mesh size is grown into affected areas. Source 
entities can be any general geometric type including 
vertex, edge, face or volume. 

• Attached entities: the geometric entities on which the 
size functions will have influence as the entities are 
meshed. These include edge, face or volume. The 
attached entity can be the same entity as the source. 

When a size function is attached to an upper topology, 
all lower topologies of the attached entity will be 
influenced. When a size function is attached to a lower 
topology, its upper topologies will not be affected.  

• Growth rate: This parameter controls the geometric pace 
with which the mesh size progresses from the source. It 
is based on the distance of the point being evaluated 
from the source. 

In cases where the elements of significantly different 
sizes are immediately adjacent to each other, both the 
meshing tool and the simulation tool cannot perform 
well. In order to maintain a desired growth ratio, the 
target size is adaptively adjusted by applying a 
geometric growth formula. This parameter specifies the 
rate of this geometric progression.  

• Distance limit: This variable specifies the range in 
which the size function is valid. It is the distance for the 
source mesh size to grow up to the size limit, but it is 
not user controlled. 

• Size limit: This is the maximum mesh size. When the 
grown size at the given location exceeds the size limit, 
this limit is used instead. Therefore, if the distance from 
a given point to a source is larger than the distance limit, 
we do not need to test the grown size and the size limit 
is directly used. 

Figure 2 demonstrates a single radiating size function. One 
edge of a cube (upper right edge) is used as the source entity. 
The spherically tipped cylinder, whose axis is the source 
edge and whose radius is the distance limit, indicates an iso-
surface of the prescribed size function within which the size 
function is valid. In the remaining areas of the cube that are 
outside the cylinder shown, the size radiating growth has no 
effect and size limit is used instead. 

2.2 Definition 
Based on practical applications and experience, the following 
size functions have been provided in our algorithms: 

 
Figure 2. Demonstration of the effective domain of 

size function 

2.1.1 Fixed size function 
For a fixed size function, the mesh size on the source entity 
is a constant value. 

To define a fixed size function, all the parameters introduced 
in section 2.1 are used, along with a “start size” specifying 
the constant size of the mesh on the source entities. 

2.2.2 Curvature size function 
A curvature based size function specifies the mesh sizes on 
the source entities relative to the degree of surface curvature, 
i.e. finer mesh sizes in highly curved regions and coarser 
mesh sizes in regions of low curvature. Curvature based size 
functions can only use faces as the source entity. This feature 
provides a convenient means of controlling the geometric 
approximation of the mesh elements. This varying size on the 
surface can then radiate outward at the specified growth rate.  

To define a curvature size function, all the parameters 
introduced in section 2.1 are used, along with an angle. This 
angle specifies the maximum angle between adjacent facets 
of geometric faces. Using angle as an input specification 
makes the curvature size function purely dependent on the 
curvature and independent of the size of the model. For 
example, a big sphere and a small sphere will have the same 
number of elements generated if they have the same 
curvature size function angle. 

2.2.3 Proximity size function 
A proximity size function controls density based on 
geometric closeness of entities. The mesh sizes on source 
entities are determined by the gap between faces (3D) or 
edges (2D) of the source entities and the required number of 
elements in the gap. 



The first additional parameter for a proximity size function is 
“cells per gap” which specifies the minimum number of 
elements that should be put in the gap between any two 
closest opposing faces (volumetric mesh) or two opposing 
edges (surface mesh). Source entities for a proximity size 
function can be faces or volumes. When a volume is used as 
the source, all faces of the volume become source faces. The 
proximity check for all source faces includes a check of the 
proximity of edges on the face. 

3. SIZE FUNCTION INITIALIZATION 

In preparation for the generation of the background grids, the 
three types of size function definitions must be initialized 
differently. This initialization establishes the desired sizes 
everywhere on the sources. 

3.1 Fixed size function 
All the source entities have a constant mesh size on the 
entity, and no special initialization is needed.  

3.2 Curvature size function 
Initialization of curvature size functions requires the 
generation of a faceted representation of the face that meets 
the curvature requirements. 

The facets on the source faces are created according to the 
specified maximum normal angle deviation. This means that 
the angle of rotation of the normal vectors of any two 
adjacent facets on a common edge does not exceed the 
specified maximum angle. This insures that the curvature of 
the face can be accurately captured. The mesh size, , at a 
node n of a facet of the source face can be computed by: 

nS

maxmax /)2/sin(*2 ρθ=nS  

Here  is the larger curvature along two orthogonal axes. 
If the computed size is larger than the size limit, or if a face 
is flat (i.e. no curvature), then the specified size limit is used. 

maxρ

It is possible for the local size, , to be larger than the 
radiation from a nearby node would permit. Thus, if the 
radiated size of node m at node n, , is less than , the 
radiated size  is used. 

nS

Smn nS

mnS

3.3 Proximity size function 
For initialization of the proximity size function, we also need 
to create facets for the faces. First, a set of coarse facets is 
created for each face according to the maximum normal 
angle specified for the proximity facet. Next, the distance of 
each facet center to another “visible” facet is calculated and 
stored with the facet. Because these coarse facets are often 
long and slender, such facet-based calculations may over-
extend the influence of gaps (see Figure 3a). To avoid this 
undesirable effect, these coarse facets are further refined as 
follows. 

Within some maximum level of facet subdivisions, if the 
maximum edge length of the current facet is larger than 
several times its distance (or gap) to the target facet, then the 
current facet will be split on the longest edge into two 
smaller ones. The sub-facets will then be compared with the 
target facet and iteratively refined as needed. Finally this gap 
value is stored in each facet. This process is optimized by 
computing the distance between the bounding box of current 
facet to the bounding boxes of other target facets and 
comparing the distance to the stored minimum distance. If 
the computed distance is beyond the stored minimum range 
of current facet, remaining calculations will be skipped. This 
significantly reduces the amount of distance calculations 
needed. Fig. 3b demonstrates that the refined facets localize 
the gap influence. 

 

                                                             

 

 

 

 

(a) Unrefined gap influence 

 
 

 

 

 

(b) Refined gap influence 

Figure 3. Refinement of proximity facets  

Also, since we are often only concerned about the gap within 
volumes, if two facets are from faces that belong to the same 
volume, we can make use of the relation of the facet normal 
vectors to avoid unnecessary comparisons. If their normal 
vectors, whose positive directions are defined as pointing 
outward the volume, are pointing toward each other, which 
means there is void space in-between, we can omit the 
proximity check. Even if no volume is provided as the source 
entity, we have to check whether the given source faces 
belong to the same volume. If they do, internally we still 
establish the volume pointer and compare the relation of face 
facets normals in order to speed up the initialization. 

If any face that owns the facet in the facet pair being 
compared is a dangling face of the volume, the normal of its 
facets is ambiguous and full calculations are needed. 

Beside face proximity check (i.e. 3D proximity), an option of 
performing edge proximity check (i.e. 2D proximity) is 



given. During edge checking, all the edges of a face need to 
be faceted into line segments. The distance between each pair 
of opposing edge segments on the same face will be 
computed and the shortest distance used to determine the 
mesh size on each line segment. To speed up computation, 
only the segment pairs within a mutually visible range will 
be checked. To guarantee accuracy, a minimum number of 
edge segments are created (50 in our implementation), 
especially for very short edge loops. 

For both the volume and face proximity controls, the mesh 
size on the source entity is determined by: 

cellsgapn NdS /=  

Where  is the smallest gap distance associated with a 

facet,  is the number of cells in the gap area. 
gapd

cellsN

4. BACKGROUND GRID GENERATION 

As a result of the size function initialization, the desired size 
on all sources is known. The next step is to establish the 
complete background grid. The background grid provides the 
radiation mechanism for all the size functions. It also allows 
multiple size functions to be combined into a global function. 
The background grid is an axis-aligned octree-based mesh, 
the size of the bounding box of all attached entities. The 
background grid values are derived at all cell corners and 
refined as needed to capture the size function gradients.  

4.1 Background grid initialization 
Setting up the background grid starts by generating a 
bounding box of the domain of the attached entities. 

To ensure resolution is not excessive, we find the dominant 
direction which is the longest range of the bounding box and 
divide it by a given number of lines in each grid (e.g. 3) to 
obtain a unit length. We ensure all other directions are scaled 
accordingly by this unit length, but require at least 2 grid 
lines in each direction. This way, the resulting background 
grids will be equi-sided cubic cells. 

If a group of entities have exactly identical size functions 
attached, a single united bounding box is used. This can save 
time in cases where the bounding boxes of individual 
attachment entities overlap. In a few cases where the 
attachment entities are far apart from each other, it can 
increase the time instead. However, an increase in speed is 
noted for almost all practical geometries. 

4.2 Establishing values at the background grid 
nodes 
Because the size on all sources, , is now known, we can 
use the same approach to handle all size functions when 
obtaining the mesh size at the background grid nodes. The 
only difficulty is to identify which source mesh size to use 
when growing to a given background grid node. This can be 

determined by projecting the given grid point onto the closest 
facet.    

entS

When growing the size from the closest facet of the source 
entity to the given corner point of the background cell, the 
mesh size is successively progressed from the size on the 
source entity. It is controlled by the defined growth rate, g , 
and the distance of the point of the background cell to the 
source. The progression is iterative. During the progress, an 
incremental distance expands step by step until the desired 
point is within the region between two neighboring distances. 
Suppose R is the distance of the given point to the source 
entity,  and  are the two said distances, respectively. 
Then the condition can be expressed as: 

nR 1+nR

condition-exit:        <= R <=  nR 1+nR

Let  be the mesh size at the previous distance and  be 
the mesh size at the subsequent distance. The initial values 
for these variables are 

nS 1+nS

   =  =  =  nS 1+nS 1+nR entS

   = 0 nR

The following loop, once completed, will give the size and 
radius of the two distances bounding the given point: 

while (!condition-exit)  { 

nS  = ; 1+nS

nR  = ; 1+nR

1+nS  =  * nS g ; 

1+nR  =  + ; nR 1+nS

} 

A linear interpolation between the two bounding distances is 
accomplished by this equation 

γ  = (R - ) / ( - ) nR 1+nR nR

Here (0 <= γ  <= 1). The actual size, , at the given point, 
P, is computed as: 

pS

pS  = (1 - γ ) *  + nS γ  *  1+nS

However, the final size is the smaller of the computed size 
and the defined size limit. 

pS  = MIN ( , ) pS maxS

If a corner point is affected by several size functions, the 
smallest mesh size will be taken for it. 

4.3 Linear interpolation  
Once the background grids are created, the mesh size at any 
given point can be found by interpolation in the background 
grids for any meshing processes. Since the background grids 
are axis-aligned and well shaped cubes, finding the correct 



background grid cell is trivial. Simple linear interpolation 
can work well to give the mesh size at any point P(x,y,z): 

∑
=

=
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Where  is the mesh size at 8 corners of the cell which the 
point falls into and  is the tri-linear interpolation function 
for each corner point. Suppose the local 
coordinates
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)( γβα ,, of the given point inside the background 
cell can be expressed as 
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Where ( )minmin,min, zyx  and ( )maxmax,max, zyx define the 
range of the cell. Then the mesh size at point P can be 
expanded as 
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4.4 Background grid refinement 
Background grid generation is the most expensive part of the 
overall process. To speed up this bottleneck, some steps have 
been taken. 

One of the most important considerations is when and how to 
stop background grid refinement. A criterion has to be set to 
ensure that an almost linear relation of mesh size has been 
reached within a cell and so there is no need to refine the cell 
again, no matter what the actual ratio of mesh sizes within a 
cell is. This is because the meshing size at a point is 
computed by linear interpolation in the background grid 
using mesh sizes at its eight corner points. The linear relation 
can be tested by comparing the deviation of the linearly 
interpolated mesh size at the center of a background grid 

 (i.e. averaged size at 8 corner points of a cell) from the 
defined mesh size  (i.e. the actual size computed from 
size functions), and take the relative percent as the error 
estimate. The background grid will be refined if the relative 
error, 

linearS

defS

δ , is larger than the specified level of accuracy, tol∆ , 
which can be expressed by the following equation:  

tol
def

deflinear

S

SS
∆<×

−
= %100δ  

Where  is a given error tolerance and is controllable by 
the user. 

tol∆

This seems a reasonable way of stopping the refining 
process, but potentially non-linear distributions in other areas 
of the cell cannot be caught nicely, especially in the earlier 
stage of the refining process. This will lead to corruption of 
grid generation, unless a constraint of one level difference is 
applied for neighboring cells. As shown in Figure 4, if the 
cell contains source entities whose smallest size, , is less 
than the minimum size at the 8 corner points of the cell, 

, then the centric size, , computed from the 8 
corners is not accurate, so another refinement to the cell is 
triggered. 

minB

minC linearS

           Size 

                                           A 

       maxC

       defS

                                                                 B linearS

                                                        minC

                                                                C 

        minB

                                  center                                     Location 

Figure 4.  Refining criterion for a background cell 
(A - actual size distribution from defined size 

functions, B – size by linear interpolation from 8 
corner points, C – source entities possibly with 

smaller size inside the cell) 

In any case, if the maximum range of the bounding box of a 
background grid cell becomes smaller than the minimum 
local size in the cell (at eight corner nodes or inside the cell), 
stop refining the cell to avoid over-refinement. 

4.5 Speed/Memory issues 
Storage of the mesh size information in the background grids 
can require a lot of memory. To speed up grid generation, we 
save the computed mesh size at each corner point of the cell, 
so that its neighboring cells can directly use the size at shared 
corner points. This option improves the speed, but sacrifices 
memory. An option is given to let the user decide whether 
memory or speed is more important. Thus, they can choose 
either saving the mesh size at unique grids or re-computing 
the mesh sizes for each cell. 



5. EXAMPLES 

A few examples are given below to show the application of a 
single type size function or a combination of them in the 
meshing process. High quality meshes have been generated 
using the defined size functions with very little effort.  

5.1 Meshing the Clown Head  
A single curvature size function is defined for meshing the 
clown head. Normal angle = 20, growth rate = 1.2, size limit 
= 2, and all faces are used as source and the size function is 
attached to the whole volume. Figure 5(a) is the meshing 
results of the whole head. Figure 5(b) and (c) shows the 
eyeball and hat-tail, respectively. You can see the meshes are 
nicely transitioned according to the curvature of the surface. 
Also, the radiation effect of the tight curvature on 
neighboring surfaces is shown. 

 

 

(a) Whole head  

 
(b) Eyeball 

 

(c) Hat-tail 

Fig. 5     Meshing the clown using a single 
curvature size function 

5.2 Use of 2D and 3D Proximity size functions 
Figure 6 shows how the 2D and 3D proximity size functions 
work. In Figure 6(a) the proximity size function is defined as 
follows: cells-per-gap =4, growth-rate =1.2, size-limit = 20 
which is big enough so that the mesh size can grow without 
any restrictions until hitting the boundary. The source face is 
face A. The sizes are radiating from the source face into the 
rest of the volume. 

Figure 6(b) shows the shape of a volume with two dangling 
faces (upper) and the meshing results (lower) of a volume 3D 
proximity size function. Parameters are specified as follows: 
cells-per-gap = 3, growth-rate = 1.2, size-limit = 2, three 
faces (one side face A and two interior dangling faces B and 
C) are used as source entities.  The size function is attached 
to the whole volume. 

A 

 

 

(a) 2D proximity 

 



  

                                                                     C     B        A 

 
(b) 3D proximity including dangling faces: shape of 

the geometry (upper) and the meshing results 
(lower) 

Figure 6.  Use of proximity size functions in volume 
meshing 

 5.3 Use of combined size functions 
Figure 7 uses a combination of size functions to mesh the 
volume. A fixed size function (start-size = 0.05, growth-rate 
= 1.2, size-limit = 0.5, two flat planes A and B as source), a 
curvature based size function (normal-angle = 10, growth-
rate = 1.2, size-limit = 0.5, two circular faces C and D as 
source) and a proximity size function (cells-per-gap = 3, 
growth-rate = 1.2, size-limit = 0.5, whole volume as source) 
are defined and attached to the same volume. In common 
areas where three size functions are effective, the smallest 
size among the three size functions is chosen to set the local 
mesh size. 

Our last example in Figure 8 shows another model meshed 
using combined size functions. Two curved faces are used as 
source for both the curvature size function (normal-angle =  

                              A                     B 

 

                                                          C                  D 

Figure 7.      Meshing results using composite size 
functions. Three kinds of size functions are 

attached to the volume. 

40, growth-rate = 1.2, size-limit = 1.5) and the proximity size 
function (cells-per-gap = 2 growth-rate = 1.2, size-limit = 2). 
Figure 8(a) is the outline of the geometry from which you 
can see the two airfoils that are close to each other. It would 
be difficult to mesh the areas between them if proximity size 
functions were not used to specify the number of element in 
the tiny gap. Figure 8(b) is the enlarged local mesh patterns 
between the two airfoils after the volume is meshed. The 
elements are generated exactly as specified and grown nicely 
from the gap toward neighboring regions. The effect of the 
curvature size function can also be seen around the wing tips. 

 

 

(a) Shape of whole geometry 



 

(b) Local detailed elements 

Figure 8.  Use of proximity and curvature size 
functions in meshing a volume with airfoil voids  

CONCLUSION 

A general method of controlling mesh sizes and radiation for 
all element types and for different kinds of geometric 
features has been created. The defined size functions have 
provided rapid evaluators that would be general for any 
meshing algorithm. Local geometric effects have been 
radiated to influence size on a more non-local area. The basic 
algorithms of constructing the background grid and creating 
fixed, curvature and proximity size functions have been put 
forward. The criterion of refining the background grid has 
been shown. Local mesh size at any point in the domain can 
be interpolated from the pre-determined sizes at corner points 
of the background cell into which the given point falls. The 
proposed sizing method has been implemented in Gambit 
product, and successfully tested on a wide variety of models 
with excellent results. 

In the future, other types of size functions can be added to 
meet specific user needs. For example, we can add a size 
function that catches the exterior proximity of the volume if 
this is desirable.  Also, we can add a size function that uses 
pre-meshed entities as sources and uses the size of the 
existing mesh on the sources to radiate. For some 
applications it is also beneficial to have the directional size 
functions with anisotropic properties.  

Speed improvement for background grid refinement is also a 
focus in the future work. 
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